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Abstract:

This study discusses existence results for a quasi-linear elliptic equation of critical
Sobolev growth [3,14] in the low-dimensional case, where the problem has a global
character which is encoded in sign properties of the “regular” part for the corresponding
Green’s function as in [9,11].
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1.Introduction.

Let ¥ be a bounded in R¥, N > 2. Given 0 < e < N — 1 and x <ix,, let us discuss
existence issues for the quasilinear problem

— Ay U= Xyet u(1+e)*—1 in ¥
u>0 in¥ 1)
u=20 on V¥,

N(1+e) .
N—(1+¢€)
the so-called critical Sobolev exponent and i, is the first eigenvalue of — A4, given by

where A, (-) = (div |V()|¢71V(")) isthe (1 + €) — Laplace operator, (1 + €)* =
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o inf Jo [Vu|*+e
= ue WM W\ {0} 1 | ite
0 f\p |u|1+6
Since Wol'“e (W) c L(1 + €)*(P) is a continuous but non- compact embedding, standard
variational methods fail to provide solutions of (1) by minimization of the Rayleigh
quotient

f |vu|1+s_ D<f |u|1+e
Que(w) == o1 € Wy (W) \ {0},

(1+e)*\([1+e)*
()

Setting
S = inf{Quc () : u € WG (W) \ {03},

It is known that S, coincides with the best Sobolev constant for the embedding
PLI+E(RN) < LA+ (RV) and then is never attained since independent of . Moreover,
by a Pohozaev identity (1), is not solvable on star-shaped domains, see [3,14]. Sabina
Angeloni, Pierpaolo Esposito [26]. The researcher intends to make few specific changes.
The presence of the perturbation term ©<,e in (1) can possibly restore compactness and
produce minimizers for Q, as shown for all x> 0 first by Brezis and Nirenberg [3] in the
semi-linear case when N > 4 and then by Gunedda and Veron [14] when N > 1+ 2¢ +

€2,

The researcher discuss now the low-dimensional case 1+ e <N < 1+ 2e + €2. In
the semi-linear situation e = 1 it corresponds to N = 3 and displays the following special

Xq

features : according to [3]. Problem (1) is solvable on a ball precisely for x € (T’ |><1)

and then, for the minimization problem on a general domain ¥, there holds

2
: 1 m? (3|P]\ 3
x,= inf{xe (0, x;) : Sic < Sp} = 2 X, (A) = =\

Through a re-arrangement argument, where A is the ball having the same measure of .

In particular, for x < % a general non-existence result on A follows from an integral

identity of Pohozacv type, obtained by testing the equation against ¥ (|Jy|)u’ for a
suitable smooth function y with ¥ (0) = 0. An integration by parts for the term

1

J-(E _ 1)N—1 |ur|e—1 u'u

0

e , N-1 ¢ N-1 @
1+e¢ l1+e—-14+€ 1+¢€(e—1)2
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is required to eliminate the dependence on the derivatives of w, which is possible in
general just for e = 1. The property x*> 0 then requires a different proof for € # 1.

Since S, decreases in a continuous way from S, to 0 as x ranges in [0,x;[ , notice that
Sk =Sy for 0 < x< i, S, <SS, for x,<ix< x; and S, is not attained for 0< x<ix,. A
natural question concerns the case x=ux, and the following general answer

Sw, Is not achieved (2)

has been given by Druet [9], with an elegant proof which unfortunately seems not to work
for e # 1. A complete characterization for the critical parameter <, then follows through a
blow-up approach crucially based on (2).

The researcher has use some of the results in [1]- precisely reported for reader’s
convenience- as a crucial ingredient to treat the quasilinear Brezis-Nirenberg problem
Green function G (-, y,) as a positive solution to

{_A1+e G-XG® =8y, in¥ (3)
G=0 on dV¥.

Since uniqueness of G.(:, y,) is just known for € > 1, hereafter the
researcher has consider the case € > 1. If w, denotes the measure of the unit
ball in RY. Recall that the fundamental solution

_N-(+9) e 1
P yo) =Coly —yol < Co =g (Nan)s, (4)

solves —A(;+¢" = &, in RY. The function
Hu(y,50) = Gu(y,70) =T (v, ¥0) ()

is usually referred to as the ““ regular ” part of G (-, y,) but is just expected to be less
singular than T'(y, y,) at x,.

The complete characterization in [9] for x, (see also [26] for an alternative proof) still
holds in the quasi-linear case, as stated by the following main result.

Theorem1l.Let1 <e <N —1< 1+ 2¢e and 0 <xx<ix,. The implications (i) = (ii) =
(iii) do hold, where

(i) there exists y, € W such that H,(y,, yo) > 0.

(i) S < Sy

(iii) S, is attained.
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Moreover, the implication (iii) = (i) doses hold under the assumption (2) and in
particular <, < 0.

Some comments are in order. Assumption N < 2(14¢€) is crucial here to
guarantee that H.(-,y,) is Holder continuous at y,, see [1]. When 2(1+¢€) <
N <1+ 2e+ €% we conjecture Hy,(y,y,) to be mildly but still singular at 1y,,

with a behavior like % for an appropriate 0 < a < N_(;Jre), and my(yy) to
—Jo
play the same role as Hy(yo, Vo) in the Theorem. The quantity m,(y,) is

usually referred to as the mass associated to G.(-,y,) and appears in several
contents, see for example [12,13,18 —20]. Notice that in the semilinear case
e=1 the range 2(1+e)<N<1+2e+€? is empty and such a situation
doesn’t see [9].

The implication (iii) = (i) follows by a blow —up argument once (2) is
assumed.
To this aim, we first extend the pointwise blow-up theory in [10] to the quasi-
linear context, a fundamental tool un the description of blow-up phenomena
whose relevance goes beyond Theorem 1.1 and which completely settles some
previous partial results [2,7,8] in this direction. Once sharp pointwise blow-up
estimates are established, a major difficulty appears in the classical use of
Pohozaev identities: written on small balls around the blow-up point as the radius
tends to zero, they rule both the blow-up speed and the blow-up point location
since boundary terms in such identities can be controlled thanks to the property
VH,(-,y,) € L*(¥). Clearly valid in the semi- linear situation, such gradient
L* —bound is completely missing in the quasi-linear context but surprisingly the
correct answer can still be found by a different approach, based on a suitable
approximation scheme for G.(-,y,). The researcher has provided a different
proof of some facts in [9]in order to avoid some rough arguments concerning the
limiting problems on half spaces, when dealing with boundary blow-up.
Under the assumption (2), in the proof of Theorem 1.1, the researcher will show
that Hy (y0,¥0) =0 for some y, € ¥, a stronger property than the validity of
implication (iii) = (i) since Hy(y,y) 1is strictly increasing in x for all ye€
Y. Since S, is not attained, notice that (2) always holds if x,= 0and then x,>0
follows by the property Hy(yo,vo) < 0 for all y, € W. Moreover, since

sup max
yew By =, g e, 0,7) =0, (6)

by monotonicity of H, in  and under the assumption (2) the critical parameter i, is the
first unique value of x> 0 attaining (6) and can be re —written as

x,= sup{x € (0,x;): H(y,y) <0 forally € ¥}.
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The researcher recalls some facts from [1] that will be used throughout the paper and
prove some useful convergence properties. The implication (i) = (ii) is established by
the expansion of Q. (PU,,,) along the “bubble” PU, ,,, concentrating at y, as € — 0 and
integral identities of Pohozaev type for G, (-, y,), crucial for a fine asymptotic analysis, are
also derived is devoted to develop the blow-up argument along with sharp pointwise
estimates to establish the final part in Theorem 1.1.
2.Some preliminary facts

For reader’s convenience, the researcher lets collect here some of the results in [26].
To give the statement of Theorem 1.1 a full meaning , the researcher has need a general
theory for problem (3), as stated in the following result see [26].
Theorem 2. [1] Let0 < e < N — 1 and X< x;. Assume e =1 and N < 2 + 2¢ if x# 0.
Then problem (3) has a positive solution G..( . ,V,) so that H,(y, y,) in (5) satisfies

_ N
VH (. ,y0) €LT(¥), §=r (_6)1 . (7)

which is unique when either x= 0 or < # 0 and (7) holds. Moreover
egiven M > 0,q, > IL% and (1 + €)y = 1 there exists C > 0 so that

|1H + clleo,B,(yo)

N
<C <r A+ ||H + cll(146)0,8,,(v0)

(1+e)q;, 5
€ E
+roa© ||f7E Bzr(yo)> ®)

for all €,1—¢, ¢ € R,f? € L% (¥) and solution G =T + H, with H € L®(¥) and
VH € L1(WP), to

—Vi4e G+ V4G = f2 in¥\ {yo} )

1

sothat €€ < 1—e < = dist (y,,0¥), Y=¥ol€ < \vr| < MIVTI(, o), le] +

1+e\THe
M<61+6+Iy—yol € )

IHlo + 215, < M, where T(.,,) is given by (1).

X Gy, € LIo(W) for q, > % and Hy(. ,y,) is continuous function in ¥ satisfying

|He (¥, ¥0) = He (Y0, Yo)| S Cly —y0l*  Vyew (10)
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forsome C > 0,1 < € < 0 with H (y,, ¥o) strictly increasing in ix.
Notice that the first part in Theorem 2.1 has been established in [15]. Let us stress that

the  condition f2 € L9o(¥) for some q, > % which is valid for f2 =x C& when

N < 2 + 2¢ if x# 0 . Of the difference equation (9) to prove L* — bounds on H as it
arises for instance in the Moser iterative argument adopted in [22]. In this respect, observe

that also in the semilinear case H. (. ,y,) is no longer regular at y, when 2 = (1 +¢) <
N

;.

The following a-priori estimates are the basis of Theorem 2.1 and will be crucially used
here to establish some accurate pointwise blow-up estimates.
Proposition 1. [1] Let 1 <€ < N — 1. Assume that (1 —¢€),, € L*(¥) f(i_e) € LY(P)
and g¢y_¢) » Yli-e) Satisfy. gi_. , Gi_c € L® (¥) N W€ (W)( 1+e)-harmonic in ¥,
g3, , gi_. non-constant unless 0 and limq_,.||(1 + €)c — (1 + €)|lo = 0 with Sll;,p(l +

sup ~
€) <y, o NN + 11921l + 11GENe] < +oo.

If w_c € W H(W)  solves  —Aqieuy—e —U—elug |3 0y = f2,__in¥, then
sup A
(1 + 6) €N ”ul—e - ul—E”oo < 0 >,
Proposition 2. Let 1<e<N-1 and l+e f2 f7 € L°(¥). Let w; € CY(¥), i =
1,2, be solutions to
A (14 €)y, — (A +euf = f7 ny
so that

u
u; >0 in¥, —1SC near 0¥
U

for some C>0.If f2< fZ with f£=0in¥Y andu; <u, ond¥,thenu, <
u, in .

The researcher has introduce now a special approximation scheme for C.(. ,y,). Given
e(N—-(1+€)

s 142e+€2
) , the so- called standard bubbles

C, = N (+e?

(N—(1+6)

€

N—(1+€)
€
€

Ue y () = 4 Tie €>0,y, €ER", (11)
elre+ |y —yol €

Are the extremals of the Sobolev inequality

1+€

SO (fRN|u|(1+e)*)(1+€)* < Rvau|1+e' ue D1,1+E(RN),
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and the unique solution in D1 1+€(RN) of
—Ap, U=U0+""1  jn RN, (12)

see [5,21,25]. For <<, consider its projection PU,,, in ¥, as the solution of

~Vy4e PUcy, = X PUE, + UE,, iny
PU.,, >0 iny (13)
PUc,, =0 on 0¥
N-1-€
The researcher lets G, = %e_ i+e PU,,, With given by (4), decompose it as G ,,, =
1
[ey, + He,y,, Where
CO _N_(1+E) Ue CO
Tey, = C € lre o0 = N—(1te€)
1 1+eN™ 1+e
(e”f +1y —yol e )
- T'(y,y0) (14)

in CL. (W\ {vo}) as e - 0. Since

1+2€+€2
—(1+€) _1+¢
Co _N=(1+6) ¢ cscN €
fe?yo = —Viie Fef.yo = C_E e Tevo : N—(1+€)
1 1+eN™ 1+e
(e”f + 1y —yol e )
-0 (15)

in Cloc(q, \ {)’o}) and

€e—1 _
j f&y, = f [Vley, | 0uTey, = — j V11 (5, ¥0) 3, T, o) (1 + €)a —1 =0
oy
vy A Y

as € — 0 in view of (12) and (14) notice that fe?yO — §,,, weakly in the sense of measures
in¥ as e - 0and G y, solves

~A14eGeyy = X GEy + f20 in ¥
Gey, > 0 in¥ (16)
Gey, =0 on ¥

#2025 (o;le — (25) sl Egmdly clul,ld o Judl lee 132



Proposition 3. Let 1 < e < N —1and assume N < 2 + 2¢ if x # 0 .Then there holds

Hey, — Hy (. ,¥0) in C(¥) (17)
at e — 0.
Proof. By proposition 1 the researcher cans find a subsequence €, — 0 so that G, ,, —

G in W' "> (W) ate — +ooforall 0 < e < é,where G = I'(y,y,) + H is a solution
of (3) for some H in view of ( 14) and (16) if x=+ 0 by the Sobolev embedding theorem
there holds

G -G inL**¢(¥Y) at € > +w (18)

€n.,Yo

the researcher lets € > 0 inview of N < 2 + 2e < 1 + 2¢€ + €2 rewrite (16) in the
equivalent form :

—Ar4e(Tey, + Heyy) + Drieley, = X GEy, in¥ (19)
Heyo = —Tey, on ¥
the researcher lets denote the solution of (16)x= by C2y, andset HY, + Ty,

=C?

€Yo
= 0 the researcher has 2 with x

. By the uniqueness part in Theorem

CO

€Yo

— Go(. ,¥o) in W' %€ (w)

ate — 0, for all 0 < € < & Moreover, since |H2,, | < M on @V, by integrating (19)
against (H2,,, ¥ M) the researcher denotes

|HS, | <M  inV¥ (20)

In an uniform ways and then ng() is locally uniformly bounded in ¥ \ {y,} . By elliptic
estimates [6,16,22,23] and (16) ., the researcher denotes that

Ggyo uniformly bounded in Cllc;?e(‘? \ {vo}) , (21)

For some —% <a< % . Integrating (19) -, against
n'*t€ H2, ,0 <n € C5°(¥), the researcher gets that

133 22025 ke — (25) suadl Egoedly Slulyuld (a e Jd) dls



1+e e-1 e-1
[ e lvg,, [ < ) [ e 11T, |7 (T, |, 17y
v v
and then (20) Young's inequality imply that
VH?,, uniformly bounded in L'*€ (¥) (22)

in view of (21) the researcher considers now the case =+ 0. Since

~Dive(Tey, + Heyy) + Drre(Tey, + Hoy,) = X GEy, in ¥
with H?,, = H,,, on ¥, an integration against H,, — H¢, =0 gives that
[[190Hcs, = B 5 10 [ Gl = el < 111G M = ],
y

gratitudes to the Holder's inequality and the coercivity properties of the (1+€) — Laplace
operator, and then

V(H,y, — H2 ,,) uniformly bounded in L**€ (%) (23)
in view of (18) and Poincar’s inequality. A combination of (22) and (23) lead to a uniform
L**¢ — bound on VH? ,, , showing by Fatou’s lemma that VH € L'*€ (¥) . By Theorem 2

,the researcher has that G = G(. ,y,) and then

Geyy — Gu (-, ¥0) In W1 H2€ (W) (24)

€Yo

ate — 0, forall0 < e < €.
To extend (20) to the case = 0, observe that (16) and —Aq T, feyO in ¥ imply

|[He,y, |l < C forall e >0 thanks to proposition 1 in view of N < 2 + 2e when x# 0.

Since f2 =x G, is uniformly bounded in L(+2€° (W) for some (1+2¢€)0 > & in view

1+2e

of >—WhenN<2+26and

1
Co(N—(1+¢) ly — yole
€

|Vre.yo| = v < M|V|(y,¥o),

1\1+e
(e”f + |y — yole)
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we can apply (8) in Theorem 2 to H,,,, as a solution to (19) by getting

|Hey0()’) — Hy ()’0:)’0)'

(1+e)(1+2€)—-N
<C<7' € ”Heyo(y) H (YO;}’O)” yBar (30) + 1 (1+2€)0(€) ) (25)

forally € Bg(yp)and 1 —e€ <e < %dist (yo, OW).

By contradiction assume that (17) does not hold. Then there exist sequences €,, — 0
and y, € ¥ so that |H6n,yo(yn) — Hy (Y, y0)| > 28 > 0. Since by elliptic estimates
[6,16,22,23,26] there holds

Gey, = Gx (- ,¥0) In Cioc(P\ {¥0} (26)

at e — 0 in view of (16) and (24), the researcher hasthat y — y, = 0 and then

|H6n,y0 (yn) - Hx(YnJ’o)l =6 (27)

thanks to Hy (. , o) € C(P). Since by the Sobolev embedding theorem H, ,,, —

Hy (. ,y0) in LE(W) ate — 0 in view of (24) and 1 + 2€ > €, we can insert (27) into (25)
and get € — +

1+€(1+2€)0—-N )

d<cC (r ||Hi (., Vo) — Hx Vo, Vo) lle» Bay (y) + 1 (+2000(e) (28)

for all % >e> i dist (y,, dW). Since

N
r €||Hx (., ¥0) — Hx (Yo, Yo)lles B2 (y9) < Cr* — 0

ate — %thanks to (10), estimate (28) leads to a contradiction and the proof is complete.
Corollary 1. Let 1 < e < N — 1 and assume N < 2 + 2¢ if x=# 0. Then the expansion

PU

€Yo

Cl N—(1+4¢€) N—(1+€)
—U )

ot € e Hy) 0 (e T (29)

does hold uniformly in ¥ at € — 0.
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3. Energy expansions and Pohozaev identities
The researcher concerned with the discussion of implication (i) = (ii) in Theorem
1, whereas the proof of (ii) = (iii) in Theorem 1 is rather classical and can be found in
[14].
Let 0 <x<ix; and y, € W so that H.(vy,Yo) > 0. The researcher shows S, < S, let
expand Hy (PU,,) for e > 0 small. Since PU,,,, solves (13), the researcher that

1+€ 1+e (1+e)*-1 _ (1+e)”
f |VPU6,J/0| - f(PUEryO) - f UElYO PUE!yO - J UeryO
4 4 4 b 4

C N—(1+€) 14+€)*—1
+C—:6 e [y Ue(,yOE) [Hx (¥, ¥0) +

o(1)]  (30)

at e — 0 in view of (29). Given ¥, = Lp;y" observe that

] Ut = J ya+e” = f Ut 4 o(eM) (31)
v

Y, RN

And

J U™ [Ho(y,y0) + o(D)] = f U [H, (y,70) + 0y — yoD® + 0(1)]
Ry v

(N—(1+€)(e) *_
— ¢ 1¥e J Ul(”e) Y Ho (3, 7o) + 01€%€]® y + 0(1)]
v

€

(N—-(1+€)(e) (N—-(1+€)(e)

=€ 1+te Hy(y,¥0) fRN U1(1+E)* +0 <6T ) (32)

In view (10) and fw Ul(“e)*_llyl"‘ < +4o0. Inserting (31)-(32) into (31)
the researcher deduces
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|1+E

1+ *
S [VPUey | = [, (PUy,) = [ U +
eN-Q1+e) %}Hlx(yo')’o) f]RN U1(1+e)* + O(EN_(1+E))-

(33)
By the Taylor expansion

N—(1+6) Cl (1+6)*—1

=Ulr 4 e T (14U

e 91y (3,50) + 0o(D)]

(PUE'YO

N—(1+€) .
+ 0€® ite Ug;;e) 24 €N

in view of (29) and [|Hw (., o) |le < 40, the researcher obtains

[Py
£

— f U1(1+6)*

RN

C .
+ eN-(+) C—l (1+ €)* Hx(¥o, ¥0) f gLt
2

€Yo
]RN
+ O(EN_(1+€)) (34)

thanks to (33)-(34) and

. N-(1+€)(e) . N-(1+€)(e)
f Ue(’ly-'(;e) 2 _ 62 1+€ f U1(1+E) 2 _ 0 (62 1+€ )

v We
for N < 2 + 2¢. Expansions (33)-(34) .

4.The amplification approach
Following [9] let us introduce the following blow —up procedure. Letting

Xq_ =X, + 1%6 , the researcher has S, _ < S, =Sy, and then S . _ is achieved by a

nonnegative u,,. € Wol'”f (W) which , up to a normalization, satisfies

N
1+e)*-1 . 1+€)* Tte
—Ay—e e =% uf_ +ul? THin W, [ ulltY = gire (35)
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Since x,< X4, by (35) the sequence u,_. is uniformly bounded in Wol'1+€ (W) and then,
up to a sub sequence u;_ — ug = 0 in WX+ (W). In ¥ as € — +oo. Since

1 lug—ellite C
Qx, . (W) = Qu, () — = Sp—
" " 1-e€ ”ul—e”%;fe)* ° 1-¢

for some C > 0 thanks to the Holder's inequality, the researcher deduces that

lim
€ — +

= S, (36)

Xi—€

By letting € — 40 in (35) the researcher deduces that u, € I/l/01’1+€ (P). Solves

N
— € (1+e) -1 (1+e)" T+e
=AUy = Xous_o +ug in ¥, [, ug < Sure

thanks to u,_. — u, in ¥ as € — 0 and the Fatou convergence Theorem, and then

So < le*(uo) = fu(()HE)* < S
p

if ug # 0. Since S, = S, would be achieved by u, if uy # 0, assumption (2) is crucial to
guarantee u, = 0 and then

Up_e = 0INW "W). up_e — 0 L2 (W) for1<1+2e<(1+€) in¥
(37)

in view of the Soblev embedding Theorem.

5- Results and Recommendations
1- Assume by contradiction y, € d¥ and set y — y, + v(y,) = 0. Let us apply the
Pohozaev identity to u;_ withe =1, f2=0andy, —9 = 0on D = ¥, to get

1+e
[ v =g = |l (38)
oy b Y
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2 — lrecommend end up with contradictory conclusion VG = 0 on d¥,, and then
¢ 0W. There holds Hy (yo,¥0) = 0.

Let us apply the Pohozaev identity to u,_, withe =1, f2=0o0nD = Bs(y,) € ¥
and to get

)
e[ W[ T A G
Bs(¥o) 3Bs (Vo) €
X(1-¢) & N—-(1+e)
(1-e) B
TTae W T TNa e el T e
N—(1+e .
_N=-(a+e W0 Z 0 (38)

N(A+€) Jopyyy =
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